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1  | INTRODUC TION

Predictive mapping is a widely used framework for producing information about the spatial variation of geographic 
variables (e.g., species habitat suitability, soil, landslide susceptibility), which are essential to support environmen-
tal modeling and decision-making efforts (Franklin, 2013; McBratney, Mendonça Santos, & Minasny, 2003; Zhu 
et al., 2014). The basic premise behind predictive mapping is that there is a relationship between the variable to 
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be predicted (referred to as target geographic variable) and other geographic variables (referred to as covariates), 
about which we already have information on their spatial variation. Then the spatial variation of the target variable 
is predicted by coupling the relationship with the spatial variation of the covariates. Clearly, the relationship is 
key and is often obtained from field samples. To make it applicable to the entire geographic area of interest (i.e., 
mapping area), the relationship must be representative, which in turn requires the field samples used to derive 
this relationship to be representative and in sufficient number. Collecting a sufficient number of representative 
samples is no small undertaking in geography (De Gruijter, Brus, Bierkens, & Knotters, 2006; Zhang et al., 2016).

Volunteered geographic information (VGI) (Goodchild, 2007) has emerged as a major source of geographic 
data that can provide field samples for predictive mapping (Connors, Lei, & Kelly, 2012; Gao, Barbier, & Goolsby, 
2011; Jokar Arsanjani, Helbich, Bakillah, Hagenauer, & Zipf, 2013; Mozas-Calvache, 2016; See et al., 2016; Sun, 
Fan, Helbich, & Zipf, 2013; Zhu et al., 2015). Although the strengths of VGI for predictive mapping can never 
be overstated (e.g., extensive spatiotemporal coverage, large quantity of data, cost-effectiveness, timeliness), 
data quality issues of VGI are under constant scrutiny (see comprehensive reviews in Flanagin & Metzger, 2008; 
Goodchild & Li, 2012; Haklay, 2010; Hung, Kalantari, & Rajabifard, 2016).

The spatial bias of VGI is among the top issues concerning the application of VGI for predictive mapping (Beck, 
Böller, Erhardt, & Schwanghart, 2014; Zhang & Zhu, 2018). Different from field samples collected at locations 
designed following rigorous geographic sampling schemes (e.g., stratified random sampling) (Jensen & Shumway, 
2010; Wang, Stein, Gao, & Ge, 2012), most VGI observations are conducted by individual volunteers at locations 
selected in an ad-hoc or opportunistic manner (Zhu et al., 2015). As a result, samples compiled from VGI obser-
vations (VGI-based samples hereafter) are often non-probability samples. Moreover, VGI observations are often 
concentrated more in certain geographic areas (e.g., populous urban areas or areas with better accessibility) than 
in other areas (e.g., remote or less accessible areas). Such imbalanced spatial coverage of observations is referred 
to as spatial bias. Spatial bias usually renders VGI observations less representative of the spatial variation of the 
geographic variable of interest, which further impedes the accuracy of predictively mapping the target geographic 
variable based on VGI-based samples (Beck et al., 2014; Kadmon, Farber, & Danin, 2004; Zhu et al., 2015).

Methods could be adopted to mitigate spatial bias in VGI-based samples (see Zhang & Zhu, 2018 for a re-
view) to improve predictive model performance. First, spatial bias in geographic samples is one particular type 
of sample selection bias. Thus, methods for accommodating sample selection bias are applicable for correcting 
spatial bias in VGI-based samples, for example, the methods of modeling sample selection process (Bethlehem, 
2010) and importance weighting (Cortes, Mohri, Riley, & Rostamizadeh, 2008; Shimodaira, 2000). Second, a few 
methods have been developed to accommodate spatial bias in geographic samples and they can be applied to 
mitigate spatial bias in VGI-based samples, such as training local instead of global models (Fink et al., 2010), filter-
ing sample locations in the geographic space or in the feature space (Boria, Olson, Goodman, & Anderson, 2014; 
Varela, Anderson, García-Valdés, & Fernández-González, 2014), weighting sample locations by effort information 
(Zhu et al., 2015), factoring bias out (Dudik, Schapire, & Phillips, 2005), and, most recently, representativeness- 
directed weighting (Zhang & Zhu, 2019a, 2019b). Different spatial bias mitigation methods have their respective 
data requirements which a specific VGI application scenario may or may not meet. For example, modeling sample 
selection process, weighting sample locations by effort information, and factoring out bias need information on 
the observation process (e.g., selection probabilities, observation effort) for bias mitigation, whilst importance 
weighting and representativeness-directed weighting require no additional information besides the basic inputs 
for predictive mapping (i.e., field samples, environmental covariates). The fitness of use of each method for spatial 
bias mitigation in a particular VGI application needs to be determined on a case-by-case basis (Zhang & Zhu, 2018).

The size of a VGI-based sample (i.e., number of VGI observations) and its spatial configuration (i.e., spatial 
distribution) are amongst the key factors that affect the effectiveness of spatial bias mitigation methods (Zhang 
& Zhu, 2019a, 2019b). A large sample size could provide more flexibility for bias mitigation. For example, if spatial 
bias were to be reduced by filtering sample locations (Boria et al., 2014; Varela et al., 2014), a larger sample size 
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allows more variety of choices regarding which sample locations to remove. Similarly, if spatial bias were to be 
alleviated by importance weighting (Cortes et al., 2008) or representativeness-directed weighting—where sam-
ple locations are weighted differentially in training predictive models such that in feature space the weighted 
frequency distribution of covariate values at sample locations (sample distribution) approximates the covariate 
frequency distribution in the mapping area (population distribution) (Zhang & Zhu, 2019a)—a larger sample size 
allows examining more variety of weight combinations. It needs to be stressed here that the weights assigned to 
sample locations in the weighting methods are different from sampling weights, which is related to the inclusion 
probability in probability sampling (most VGI-based samples are non-probability ones).

However, large sample size by itself does not warrant effective bias mitigation. The spatial configuration of 
sample locations also plays an important role. For instance, if all sample locations are clustered in a small area cov-
ering a narrow niche of the environmental gradients, there is little room to adjust the sample distribution towards 
resembling the population distribution through weighting sample locations. In contrast, if the sample locations 
spread across the full range of environmental gradients, more variety of environmental conditions is present in 
the sample and thus there is more flexibility for differentially weighting the sample locations so that the sample 
distribution closely resembles the population distribution.

There exists only limited investigation on the impacts of sample size and sample spatial distribution charac-
teristics on the effectiveness of the spatial bias mitigation methods. Varela et al. (2014) observed that ecological 
niche models built with fewer but environmentally filtered species occurrence locations outperformed models 
built with many unfiltered biased occurrence locations. Yet they did not examine how sample size affects the 
effectiveness of the bias mitigation method. Zhang and Zhu (2019b) briefly explored how soil sample size would 
affect the effectiveness of the representativeness-directed weighting approach for bias mitigation. They found 
that the approach brought less accuracy improvement for soil mapping on soil samples of larger sample size. To the 
best of our knowledge, there are few to no studies examining the impact of the spatial distribution characteristics 
of VGI-based samples on the effectiveness of the spatial bias mitigation methods.

This study presents an empirical evaluation of how VGI sample size and spatial distribution characteristics 
impact the effectiveness of spatial bias mitigation methods through a habitat suitability mapping case study. 
Compared to Zhang and Zhu (2019a), who developed the representativeness-directed weighting method for bias 
mitigation, this work makes new contributions to the community by seeking answers to the research question 
of how sample size and sample spatial distribution characteristics impact the effectiveness of spatial bias miti-
gation methods in general. In addition to the representativeness weighting method, the importance weighting 
method for sample bias correction was also examined (see Section 2.2). Even though the dataset used in this 
study (Section 2.1) has been used in previous publications, an entirely new set of experiments were designed and 
conducted (Section 2.4) to answer the research question.

The remainder of this article is organized as follows. Section 2 presents the data and methods used in this 
study and the experiment design for evaluation. Results are presented in Section 3, and discussed in Section 4. 
Conclusions are drawn in Section 5.

2  | DATA AND METHODOLOGY

2.1 | Study area and data

A case study of mapping habitat suitability of the red-tailed hawk (Buteo jamaicensis) using VGI data from the eBird 
citizen science project (Sullivan et al., 2014) and environmental covariate data was conducted in Wisconsin, USA, 
to examine the impacts of VGI sample size and spatial distribution characteristics on the effectiveness of two bias 
mitigation methods.
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2.1.1 | Covariate data

Many environmental factors influence the habitat suitability of B. jamaicensis (Preston, 2000). A set of 71 envi-
ronmental covariates representing spatial variation of the human population (housing density, population density, 
etc.), terrain (elevation), climatic conditions (temperature, precipitation, etc.), landscape level, and land cover class 
level indices and statistics that reflect habitat configuration (edge density, patch index, patch density, etc.) were 
compiled. Principal component analysis was applied on the covariates. Only the first 11 principal components that 
retain more than 80% of the total variance of the original covariates were used as covariates for habitat suitability 
mapping in this study (Zhang & Zhu, 2019a).

2.1.2 | VGI data

eBird data (Munson et al., 2012) were used for mapping B. jamaicensis habitat suitability. eBird checklist loca-
tions indicate bird watchers' observation efforts. A set of 655 geographically unique eBird checklist locations 
reported in June 2012 in the study area were extracted (Figure 1) (Zhang & Zhu, 2019a). These locations tend to 
spatially bias toward populous urban areas. This set of checklist locations, regardless of whether B. jamaicensis 
was observed, was treated as a biased VGI sample. Spatial bias mitigation methods (Section 2.2) were applied to 
determine the weights for these checklist locations.

B. jamaicensis occurrences were reported at 75 of the 655 checklist locations (Figure 1). Weights associated 
with these 75 occurrence locations were then extracted and used to weight the occurrence locations in training 
predictive models for suitability mapping (Section 2.3.1).

2.2 | Spatial bias mitigation methods

Some methods for mitigating spatial bias in VGI require information on the observation process, which is often not 
available in many VGI applications. The representativeness-directed weighting (Zhang & Zhu, 2019a) and impor-
tance weighting (Cortes et al., 2008; Shimodaira, 2000) methods need no additional data besides the basic inputs 
for predictive mapping. Thus, these two methods were adopted in this study to mitigate spatial bias in VGI-based 
samples.

2.2.1 | Representativeness-directed weighting

The representativeness-directed approach to mitigating spatial bias in VGI for predictive mapping (Zhang & Zhu, 
2019a) is based on the idea of the third law of geography, which contemplates that the representativeness of a 
sample location should be measured using its degree of closeness to other locations in the feature space con-
structed by a set of covariates (Zhu, Lu, Liu, Qin, & Zhou, 2018). Under this notation, the representativeness of a 
VGI-based sample is evaluated as the degree of how well the covariate domain occupied by the locations in the 
mapping area (population distribution) is represented by the set of sample locations from VGI (sample distribu-
tion). This evaluation can be used not only to reveal the spatial bias of the sample distribution, but also to mitigate 
the spatial bias by weighting the sample locations over the less represented area heavier in predictive mapping, 
such that the sample distribution more closely resembles the population distribution. The process of bias mitiga-
tion using the representativeness-directed approach consists of three major steps (Zhang & Zhu, 2019a).

The first step is to select a set of covariates which are relevant to the target variable and for which data reflect-
ing their spatial variation are available. To reduce the dimensionality of the feature space and eliminate collinearity 
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among the covariates, principal component analysis was applied to transform the original covariates into a set of 
principal components, and only the first few components retaining most of the variance in the original covariates 
are used as the new set of covariates (Section 2.1.1).

The second step is to quantify sample representativeness by measuring the similarity between the probabil-
ity distribution of covariate values at sample locations (sample distribution) and the covariate distribution in the 
mapping area (population distribution). Given the sample locations and the covariate data layers, values of each 
covariate at the sample locations can be extracted to estimate the sample distribution using univariate kernel 
density estimation (Silverman, 1986):

where f̃ (v) is the estimated sample distribution regarding covariate v, Vi is the value of v at sample location i, wi is 
the weight for location i, and n is the total number of sample locations. The Gaussian kernel was adopted for the 
kernel function K:

(1)%f (v)=

n
∑

i=1

wi

1

%h
K

(

v−Vi

%h

)

F I G U R E  1 eBird checklist locations and B. jamaicensis occurrence locations in June 2012
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where h̃ is the bandwidth and was determined using the rule-of-thumb algorithm (Silverman, 1986):

in which �̃v is the standard deviation of the values of v at all n sample locations.
The probability distribution of covariate v in the mapping area f (v) (population distribution regarding v) was 

estimated similarly:

where Vj is the value of v at cell j and m is the total number of cells in the mapping area. The Gaussian kernel was 
used for K and the bandwidth h was determined using the rule-of-thumb algorithm (based on the standard devia-
tion of the values of v at all m cells).

The similarity between the sample distributions f̃ (v) and the population distribution f (v) was then computed 
as:

where Sv is the similarity between the two distributions regarding covariate v, Af̃(v) and Af(v) are the areas under 
the two probability distribution curves, respectively, and Af̃(v) ∩Af(v) is the overlapping area under the two curves 
(Figure 2).

The similarity between sample distribution and population distribution regarding each of the covariates was 
computed following Equations (1) through (5).

Finally, the sample representativeness R considering all covariates was computed as a weighted average of the 
similarities regarding individual covariates using the eigenvalues from principal component analysis as weights:

where L is the number of covariates, �v is the eigenvalue of covariate (principal component) v, which is proportional 
to the percentage of variance it retains. The sample representativeness R has a value range of [0, 1.0], with a higher 
value indicating better sample representativeness.

The third step is to allocate weights to sample locations such that sample representativeness R is maximized. 
When estimating the sample distribution [Equation (1)], unequal weights can be assigned to sample locations. 
Different weight assignments will result in different sample distributions and thus different similarities to the 
population distribution. That is, it is possible to adjust the weights such that the sample distribution matches 
as closely as possible the population distribution (i.e., maximizing sample representativeness). Weights for the 
sample locations were determined using an optimization procedure (genetic algorithm) where the objective is 
to find a set of optimal weights for the sample locations that maximize sample representativeness. Under this 
representativeness-directed weighting scheme, sample locations over a less represented area are weighted 
heavier.
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The determined weights are used to weight sample locations in training models for predictive mapping. For 
example, when using weighted sample locations to train a regression model, the weights can be used to weight 
individual residual terms in determining regression coefficients based on ordinary least squares.

2.2.2 | Importance weighting

Importance weighting is a method developed in the machine learning community for correcting for sample selec-
tion bias, which is also referred to as covariate shift and transfer learning (Cortes et al., 2008; Pan & Wang, 2010; 
Zadrozny, 2004). Sample selection bias occurs when training data and test data are drawn from different underly-
ing distributions. In the context of predictive mapping, due to spatial bias, the distribution of covariate values at 
the sample locations (training data) is different from the covariate distribution over the mapping area (from which 
test data are drawn).

To correct for sample selection bias, training examples are weighted by an importance weighting function to 
compute loss in learning classification and regression models (Shimodaira, 2000). For example, linear regression 
uses squared error as the loss function, which is a measure of the goodness-of-fit of the model. An importance 
weighting function can be used to weight individual residual terms in computing the sum of squared errors and 
therefore would affect the determination of model coefficients. It is proven that, asymptotically, the optimal 
weighting function is the ratio of the probability density function of features on the test data (test data distribu-
tion) and the density function on the training data (training data distribution) (Cortes et al., 2008; Zadrozny, 2004). 
The optimal weighting function can be computed based on empirical estimates of the two density functions.

Applying importance weighting to mitigate spatial bias in VGI-based samples for predictive mapping, the test 
data distribution is the multivariate probability density function of covariate values in the mapping area, as test 
data are assumed to be drawn from the mapping area. The training data distribution is the multivariate probability 

F I G U R E  2 Similarity between the sample distribution and the population distribution regarding one covariate
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density function of covariate values at sample locations. These two density functions were estimated using mul-
tivariate kernel density estimation (Scott, 2015), implemented in the SciPy Python library (Jones, Oliphant, & 
Peterson, 2001). The ratios of the two density functions (at data points corresponding to sample locations in 
feature space) were then used to weight sample locations in training predictive models. Under this importance 
weighting scheme, sample locations in less represented areas receive heavier weights.

The representativeness-directed weighting method and the importance weighting methods both involve esti-
mating a probability distribution of covariate values at sample locations, which is then compared to the covariate 
distribution over the mapping area to determine weights for bias mitigation. A large number of sample locations 
that spread across the mapping area, covering the full extent of covariate gradients, would be ideal for estimating 
robust probability distributions and examining more variety of weight assignments. Thus, sample size and spatial 
configuration of sample locations are supposed to affect the effectiveness of the two bias mitigation methods.

2.3 | Habitat suitability mapping

2.3.1 | Suitability modeling and mapping

Logistic regression (LR) was adopted for modeling and mapping species habitat suitability (Zhang & Zhu, 2019a). 
LR models can be trained using a training sample consisting of the B. jamaicensis occurrence locations and back-
ground locations, along with the in-situ covariate values. A set of 1,000 locations uniformly randomly selected 
from the study area were used as backgrounds. The B. jamaicensis occurrence locations from eBird and these 
background locations were used to train LR models. Species occurrence locations may carry different weights (as 
determined using the two bias mitigation methods; Section 2.2) when training the models, whilst the background 
locations had an equal weight of 1.

LR models were trained using procedures implemented in the scikit-learn package (Pedregosa et al., 2012), which 
is capable of accounting for weights of the training sample. A trained LR model was applied to the covariate values at 
every location (cell) in the study area to predict the in-situ habitat suitability and thereby produce a suitability map.

2.3.2 | Model performance evaluation

B. jamaicensis occurrence locations obtained from the North American Breeding Bird Survey (BBS) (https://www.
pwrc.usgs.gov/BBS/RawDa ta/) were used to evaluate the performance of the predictive LR model. BBS routes 
have roughly uniform spatial coverage and sample habitats representative of the entire region (Sauer et al., 2017). 
B. jamaicensis was observed at 73 stops on the active BBS routes surveyed in Wisconsin in the breeding season 
(May or June) of 2012 (Figure 3) (Zhang & Zhu, 2019a).

The AUC (area under the receiver operating characteristic curve) was adopted as a threshold-independent 
measure of predictive model performance (Phillips & Dudík, 2008). It can be computed based on a predicted suit-
ability map and a set of validation data consisting of B. jamaicensis occurrence locations from BBS and background 
locations. A set of 1,000 locations were randomly chosen from the study area as backgrounds for validation. AUC 
is the probability that the predicted suitability at a randomly chosen species presence location is higher than that 
at a randomly chosen background location (Phillips, Anderson, & Schapire, 2006). The AUC value ranges from  
0 to 1. AUC = 0.5 indicates random predictions; AUC < 0.5 indicates predictions contradicting the validation data; 
AUC > 0.5 indicates predictions agreeing with the validation data (AUC = 1 indicates perfect prediction).

Due to the lack of reliable absence locations of the species in this study, habitat suitability modeling was 
trained using species presence locations and randomly sampled background locations (Phillips et al., 2006). 
The model thus distinguishes environmental conditions that are suitable for the species from the background 

https://www.pwrc.usgs.gov/BBS/RawData/
https://www.pwrc.usgs.gov/BBS/RawData/
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environmental conditions in the study area. The modeled habitat suitability is a relative index, not an estimate of 
species occurrence probability. It would be arbitrary to choose a suitability threshold to turn the suitability map 
into a presence/absence map for the purpose of evaluating the accuracy of the binary map (e.g., confusion matrix, 
overall accuracy, kappa index, etc.) (Hirzel, Le Lay, Helfer, Randin, & Guisan, 2006). In contrast, AUC was also 
computed based on species presence and background locations, and it is independent of any particular choice of 
suitability threshold. It has been widely used for evaluating the performance of species distribution and habitat 
suitability models (Dudik et al., 2005; Elith et al., 2006; Phillips et al., 2006, 2009; Phillips & Dudík, 2008; Zhang, 
Zhu, Huang, & Xiao, 2018; Zhang, Zhu, Windels, & Qin, 2018).

2.4 | Experiment designs

VGI-based samples with diverse characteristics in terms of sample size, spatial configuration, and number of spe-
cies occurrences were constructed based on the VGI data. The spatial bias mitigation methods were then applied 
to mitigate spatial bias in the samples for habitat suitability mapping.

F I G U R E  3 B. jamaicensis occurrence locations obtained from 2012 BBS data
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2.4.1 | Effort samples with varying sample sizes

eBird checklist locations were treated as a biased VGI-based effort sample, to which the spatial bias mitigation 
methods were applied to determine the weights (as discussed in Section 2.2). Effort sample size affects the de-
termined weights and therefore would impact the bias mitigation methods' effectiveness in improving predictive 
model performance.

To investigate such impacts, effort samples were compiled at sample size ranging from 100 through 600 at an 
increment of 100. Specifically, a certain number of locations were randomly sampled at an equal selection prob-
ability from the 580 checklist locations where no B. jamaicensis occurrences were reported, such that an effort 
sample containing the sampled locations and the species occurrence locations would have the desired sample size. 
For example, at sample size 100, only 25 locations were sampled from the 580 non-occurrence checklist locations. 
The 25 locations were combined with the 75 B. jamaicensis occurrence locations to form an effort sample. This 
was repeated 20 times to account for randomness in the sampling at each sample size. As a result, there were 20 
effort samples at each sample size.

The 75 species occurrence locations were always kept in the effort samples. This allowed examining the sole 
impact of effort sample size with an equal number of species occurrence locations used to train predictive models. 
Moreover, as the non-occurrence locations were randomly sampled from the 580 locations, the effort samples of 
different sizes were expected to have similar spatial configurations. This allowed assessing the impact of effort 
sample size while controlling for sample spatial configuration.

2.4.2 | Effort samples with varying spatial configurations

The spatial distribution characteristics of a VGI-based effort sample could also affect the effectiveness of the bias 
mitigation methods (as argued in Section 1). To examine such effects, effort samples with various spatial configu-
rations were constructed, as described below.

The study area was first divided into four spatial zones, namely north west (NW), north east (NE), south east 
(SE), and south west (SW), by bisecting its rectangular bounding box along the north-south and the east-west 
directions (Figure 4). Accordingly, the 580 non-occurrence checklist locations were divided into the four zones. 
Checklist locations were dense in the SE zone, followed by the NW zone, whilst those in the NE and SW zones 
were relatively sparse.

The locations in each zone were then combined with the 75 B. jamaicensis occurrence locations to form an 
effort sample. This resulted in four effort samples, which were denoted by NW, NE, SE, and SW, respectively. 
Besides, the locations in any two zones were combined with the occurrence locations to form an effort sample. 
This resulted in six effort samples, denoted by N, E, S, W, NW-SE, and NE-SW, respectively. Furthermore, the 
locations in any three zones (i.e., locations in the other zone were excluded) were combined with the occurrence 
locations to form an effort sample. This resulted in four effort samples, denoted by exNW, exNE, exSE, and exSW, 
respectively. Finally, the 580 non-occurrence locations were then combined with the 75 B. jamaicensis occurrence 
locations to form yet another effort sample, demoted by ALL.

These effort samples had varying spatial configurations. Nonetheless, the 75 species occurrence locations 
were always present in each effort sample. This allowed examining the impacts of effort sample spatial configura-
tion with an equal number of species occurrence locations used to train predictive models. Although it is difficult 
to strictly control for effort sample size across various sample spatial configurations, results show that for this set 
of effort samples spatial configuration (not sample size) was the dominant factor determining sample representa-
tiveness (Section 3.2.1) and model performance improvement (Section 3.2.3). Therefore, the marginal effects of 
sample size can reasonably be assumed negligible.
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2.4.3 | Effort samples with varying number of species occurrences

Since only B. jamaicensis occurrence locations were used in training predictive models for habitat suitability map-
ping (Section 2.3.1), the number of species occurrence locations in effort samples could affect the effectiveness 
of the bias mitigation methods for improving model performance. To examine such effects, VGI-based effort 
samples containing varying number of species occurrence locations were compiled.

The number of species occurrences ranged from 10 through 70 at an increment of 5. For each number of 
species occurrence locations, a corresponding number of locations were randomly sampled at an equal selection 
probability from the 75 B. jamaicensis occurrence locations. The sampled locations were combined with the 580 
non-occurrence checklist locations to form an effort sample. This was repeated 20 times to account for random-
ness in the sampling. As a result, there were 20 effort samples for each number of species occurrences.

The 580 non-occurrence locations were always present in each effort sample. Results indicate that variations 
in representativeness of this set of effort samples were very small due to the only slight differences in effort sam-
ple size (Section 3.3.1). This allowed examining the impacts of number of species occurrence locations with similar 
effort sample spatial configuration and close effort sample size.

F I G U R E  4 Division of eBird checklist locations into four spatial zones
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2.4.4 | Spatial bias mitigation for suitability mapping

The two bias mitigation methods (Section 2.2) were applied to determine weights for each of the above VGI 
samples. Sample representativeness of the unweighted or weighted VGI samples (as defined in the representa-
tiveness-directed weighting approach; Section 2.2.1) was evaluated. Weights associated with B. jamaicensis oc-
currence locations were then used to weight the occurrence locations in training predictive models for suitability 
mapping.

AUC values of the suitability models were computed (Section 2.3.2) and compared using statistical analyses 
(i.e., t test, Spearman's rank correlation coefficient rs, coefficient of determination r2) to investigate the impacts 
of VGI sample size, effort sample spatial configuration, and number of species occurrences in the effort sample 
on the effectiveness of the bias mitigation methods. The statistical analyses were performed using the scipy.stats 
Python library (Jones et al., 2001).

3  | RESULTS

3.1 | Effort samples with varying sample sizes

3.1.1 | Representativeness versus effort sample size

Across various sample sizes, weighting effort samples with weights determined through the representativeness-
directed weighting method consistently improved sample representativeness (Figure 5). The improvements were 
statistically significant based on paired-sample Student t tests (Table 1).

The representativeness of an effort sample generally increases as sample size increases, until reaching a pla-
teau at a certain sample size (e.g., 400) (Figure 5). For unweighted and weighted effort samples, rs between the 
mean effort sample representativeness and sample size were rs = 1 (p = .000; n = 6) and rs = .942 (p = .004; n = 6), 
respectively, suggesting a statistically significant strong positive correlation between effort sample size and ef-
fort sample representativeness. In addition, sample size explains about 76% (r2 = .766; p = .000; n = 6) and 58% 
(r2 = .586; p = .001; n = 6) of the variations in mean representativeness of unweighted and weighted effort samples, 
respectively.

3.1.2 | AUC versus sample size

Compared to the baseline performance of the suitability model trained using unweighted species occurrence 
locations (AUC = 0.716), the spatial bias mitigation methods effectively improved AUC by weighting species oc-
currence locations in training LR models (Figure 6). This observation holds across various effort sample sizes and 
the performance improvements were statistically significant (Table 2). Notably, the representativeness-directed 
weighting method performed better than the importance weighting method on improving AUC. At sample size 
300 and beyond, the mean AUC achieved using representativeness-directed weighting was statistically signifi-
cantly higher than that achieved using importance weighting (Table 2).

AUC achieved using the two weighting methods increases as effort sample size increases, before plateauing 
at sample size 300–400 (Figure 6). The representativeness weighting method performed better (as measured by 
AUC) on effort samples of larger sample sizes (rs = .828; p = .041; n = 6) and sample size explains about 72% of the 
variations in mean AUC (r2 = .724; p = .000; n = 6). Effort sample size did not statistically significantly correlate with 
performance of the importance weighting method (rs = .771; p = .072; n = 6), but sample size still explains about 
54% of the variations in mean AUC (r2 = .547; p = .002; n = 6).
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3.1.3 | AUC versus representativeness

Mean AUC achieved using the two weighting methods increases as the mean representativeness of effort sam-
ples increases, before plateauing around a mean representativeness of 0.85 (Figure 7). The representativeness 
weighting method was more effective in improving AUC on effort samples of higher representativeness (rs = .828; 
p = .041; n = 6) and representativeness explains about 97% of the variations in mean AUC (r2 = .978; p = .000; 
n = 6). Mean sample representativeness did not statistically significantly correlate with the performance of the 
importance weighting method (rs = .771; p = .072; n = 6), but sample representativeness still explains about 94% of 
the variations in mean AUC (r2 = .944; p = .000; n = 6).

F I G U R E  5 Sample representativeness improvement at various effort sample sizes

TA B L E  1 Statistical significance tests on the difference between the mean representativeness of unweighted 
and weighted effort samples (paired-sample t tests; df = 19; one-tailed)

Sample size 100 200 300 400 500 600

Representativeness 
(unweighted sample)

Mean 0.802 0.834 0.844 0.850 0.852 0.855

SD 0.011 0.012 0.008 0.006 0.005 0.003

Representativeness (weighted 
sample)

Mean 0.904 0.930 0.932 0.934 0.934 0.935

SD 0.009 0.009 0.006 0.008 0.004 0.003

t Statistic 71.626 51.292 88.779 79.682 89.887 135.459

p Value .000 .000 .000 .000 .000 .000
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F I G U R E  6 Performance of predictive suitability models trained using effort samples with various sample 
sizes

TA B L E  2 Statistical significance tests on the differences between the mean AUC achieved using the two 
weighting methods and the baseline AUC = 0.716 using unweighted species occurrences (one-sample t tests; 
df = 19; one-tailed) and the differences between the mean AUC achieved using the two weighting methods 
(paired-sample t tests; df = 19; one-tailed)

Sample size 100 200 300 400 500 600

Representativeness weighting Mean 0.726 0.737 0.742 0.746 0.746 0.744

SD 0.007 0.006 0.004 0.003 0.003 0.004

t Statistic 6.442 15.422 31.204 40.739 46.555 33.434

p Value .000 .000 .000 .000 .000 .000

Importance weighting Mean 0.728 0.735 0.736 0.737 0.737 0.737

SD 0.004 0.003 0.003 0.001 0.001 0.001

t Statistic 12.463 26.125 29.317 67.336 61.536 88.595

p Value .000 .000 .000 .000 .000 .000

t Statistic −1.435 1.384 4.680 10.261 12.825 9.818

p Value .084 .091 .000 .000 .000 .000
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3.2 | Effort samples with varying spatial configurations

The effectiveness of the two bias mitigation methods to improve suitability model performance on effort samples 
of varying spatial configurations is shown in Table 3. Generally, weighting species occurrences using the two meth-
ods helped improve suitability model performance (i.e., increased AUC) compared to the performance achieved 
based on unweighted occurrences (AUC = 0.716). The only exceptions were effort samples SE and E, where the 
importance weighting method degraded model performance (AUC = 0.701 and 0.708, respectively). This might be 
partially due to the two samples being of relatively low representativeness compared to other samples.

3.2.1 | Representativeness versus effort sample spatial configuration

Among the effort samples with varying spatial configurations, sample NE-SW has the highest representative-
ness of 0.860 at a relatively small sample size of 216, whilst sample SE has the lowest representativeness of 
0.779 at a moderate sample size of 357 (Table 3). This disproportionality between sample representativeness and 
sample size was not surprising given the spatial distribution characteristics of the two effort samples (Figure 8). 
Sample NE-SW spreads widely and covers most parts of the study area, except the north-west. Sample SE, in 
contrast, is relatively clustered in the south-east with very limited coverage in the north-west, north-east, and 
south-west. Obviously, the representativeness of an effort sample is greatly affected by the spatial configuration 

F I G U R E  7 Relationship between mean AUC and mean representativeness of effort samples with varying 
sample size
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of the sample. Nevertheless, weighting effort samples using weights determined through the representativeness-
directed approach consistently improved sample representativeness (Table 3).

3.2.2 | AUC versus representativeness

Across effort samples with various spatial configurations, weighting species occurrences in training suitability 
models using weights determined through the two bias mitigation methods also consistently increased the per-
formance of the models compared to the baseline performance (AUC = 0.716). The mean AUC achieved by the 
representativeness weighting method was statistically significantly higher than that achieved by the importance 
weighting method (paired-sample t tests; df = 14; one-tailed; t statistic = 2.389; p = .016).

AUCs of the suitability models trained using weighted species occurrences were statistically significantly pos-
itively correlated with the representativeness of effort samples (rs = .675, p = .005, n = 15 and rs = .521, p = .046, 
n = 15 for representativeness weighting and importance weighting, respectively) (Figure 9). Effort sample rep-
resentativeness explains a moderate portion of variations in the AUCs (r2 = .283, p = .000, n = 15 and r2 = .362, 
p = .000, n = 15, respectively, for the two weighting methods).

3.2.3 | Effects of effort sample size

With varying spatial configurations, the correlation between sample representativeness and effort sample size 
was no longer statistically significant (rs = .214; p = .443; n = 15). Sample size explains only less than 5% of the 
variations in sample representativeness (r2 = .047; p = .044; n = 15). This implies that the representativeness of the 
effort samples was more affected by spatial configuration than sample size.

TA B L E  3 Effectiveness of the two bias mitigation methods on effort samples with varying spatial 
configurations (all effort samples contain 75 species occurrences)

Zone

Effort 
sample 
size

Unweighted Weighted

Representativeness AUC Representativeness
AUC (representativeness 
weighting)

AUC (importance 
weighting)

NW 232 0.817 0.716 0.928 0.742 0.742

NE 138 0.841 0.716 0.929 0.741 0.725

SE 357 0.779 0.716 0.863 0.738 0.701

SW 153 0.820 0.716 0.893 0.734 0.743

N 295 0.815 0.716 0.925 0.746 0.742

E 420 0.812 0.716 0.923 0.730 0.708

S 435 0.805 0.716 0.888 0.734 0.721

W 310 0.845 0.716 0.930 0.735 0.752

NW-SE 514 0.836 0.716 0.926 0.747 0.725

NE-SW 216 0.860 0.716 0.936 0.748 0.745

exNW 498 0.832 0.716 0.931 0.734 0.724

exNE 592 0.847 0.716 0.933 0.753 0.736

exSE 373 0.840 0.716 0.929 0.738 0.752

exSW 577 0.845 0.716 0.928 0.748 0.727

ALL 655 0.856 0.714 0.935 0.749 0.737
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The correlation between AUC of the suitability model trained using weighted species occurrences and effort 
sample size was not statistically significantly either. For the representativeness weighting and importance weight-
ing methods, rs between AUC and effort sample size was rs = .328 (p = .231; n = 15) and rs = −.31 (p = .259; n = 15), 
respectively. Sample size explains a very small portion of the variations in AUC (r2 = .126, p = .002, n = 15 and 
r2 = .055, p = .03, n = 15 for the two methods, respectively). It again implies that, with varying spatial configura-
tions, the effectiveness of the two methods in improving model performance was mostly affected by the spatial 
configuration of the effort samples rather than the sample size.

3.3 | Effort samples with varying number of species occurrences

3.3.1 | Representativeness versus number of species occurrences

Regardless of weighting the effort samples or not, variations in representativeness of the samples contain-
ing varying number of species occurrences were very small due to the only slight differences in effort sample 
size (Figure 10). Nonetheless, there is a strong positive correlation between effort sample size and mean rep-
resentativeness for both unweighted and weighted effort samples (rs = 1, p = .000, n = 7). Effort sample size 
explains over 97% of the variations in mean representativeness (r2 = .973, p = .000, n = 7 and r2 = .992, p = .000, 
n = 7, respectively, for unweighted and weighted effort samples). This observation is consistent with that in 
Section 3.1.1.

F I G U R E  1 0 Representativeness of effort samples containing varying number of species occurrence locations
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3.3.2 | AUC versus number of species occurrences

Compared to suitability models trained using unweighted species occurrences, models trained using species oc-
currences with representativeness weighting had statistically significant higher mean AUC across various number 
of species occurrences (Figure 11; Table 4). For importance weighting, the improvements were observed at 30 
species occurrences and beyond. Overall, representativeness weighting improved AUCs statistically significantly 
more than importance weighting did (Table 4).

AUC achieved using the two weighting methods increases as the number of species occurrences increases, be-
fore reaching a plateau around 60 (Figure 11). A strong positive correlation exists between the number of species 
occurrences and the mean AUC achieved by representativeness weighting and importance weighting (rs = .964, 
p = .000, n = 7 and rs = 1, p = .000, n = 7, respectively). The number of species occurrences explains over 84% of 
the variations in the mean AUC achieved by the two weighting methods (r2 = .844, p = .000, n = 7 and r2 = .916, 
p = .000, n = 7, respectively).

3.3.3 | AUC versus representativeness

Mean AUC achieved using representativeness weighting and importance weighting increases as the effort sample 
representativeness increases, before the representativeness weighting method reaches a plateau around a repre-
sentativeness of 0.855. The weighting methods were more effective in improving AUC on effort samples of higher 

F I G U R E  11 Performance of predictive suitability models trained using various number of species occurrence 
locations
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representativeness (rs = .964, p = .000, n = 7 and rs = 1, p = .000, n = 7, respectively). Effort sample representa-
tiveness explains over 76% of the variations in the mean AUC achieved by the two weighting methods (r2 = .764, 
p = .000, n = 7 and r2 = .831, p = .000, n = 7, respectively).

4  | DISCUSSION

As revealed in Section 3, across the VGI-based samples with diverse characteristics, the two spatial bias mitiga-
tion methods were effective in improving the performance of the predictive suitability model, although the rep-
resentativeness weighting method consistently outperformed the importance weighting method. Nonetheless, 
there are commonalities regarding how sample size, spatial configuration, and representativeness of a VGI sample, 
and the number of species occurrences in the VGI sample, impacted the effectiveness of the two spatial bias 
mitigation methods.

4.1 | Impact of VGI sample size

A positive correlation between suitability model performance (i.e., AUC) and VGI sample size was observed, re-
gardless of whether there were equal number of species occurrences in the VGI samples, provided that the sam-
ples have similar spatial configurations. For example, samples examined in Section 3.1 (which contained an equal 
number of species occurrences) and Section 3.3 (which contained a varying number of species occurrences) all had 
similar spatial configurations as they were randomly selected from the original eBird checklist locations. Across 
these samples, AUCs of the suitability models trained using the species occurrences weighted using the two 
spatial bias mitigation methods initially increase as the sample size increases, before reaching a plateau beyond a 
certain sample size (Figures 6 and 11). The plateau indicates a ceiling effect of sample size on effectiveness of the 
bias mitigation methods.

TA B L E  4 Statistical significance tests on the differences between the mean AUC achieved using the two 
weighting methods and using unweighted species occurrences (paired-sample t tests; df = 19; one-tailed) and 
the differences between the mean AUC achieved using the two weighting methods (paired-sample t tests; 
df = 19; one-tailed)

Number of species 
occurrences 10 20 30 40 50 60 70

Unweighted Mean 0.701 0.698 0.708 0.712 0.714 0.715 0.715

SD 0.027 0.019 0.011 0.010 0.008 0.004 0.004

Representativeness weighting Mean 0.715 0.722 0.734 0.741 0.742 0.744 0.744

SD 0.026 0.022 0.012 0.010 0.009 0.006 0.009

t Statistic 2.432 5.425 12.553 14.016 13.817 20.273 17.019

p Value .013 .000 .000 .000 .000 .000 .000

Importance weighting Mean 0.695 0.707 0.720 0.720 0.729 0.730 0.735

SD 0.029 0.020 0.019 0.017 0.010 0.010 0.004

t Statistic −1.004 1.479 2.885 2.420 5.429 6.927 20.065

p Value .164 .078 .005 .013 .000 .000 .000

t Statistic 3.767 3.219 3.357 7.129 5.226 7.614 5.367

p Value .000 .003 .002 .000 .000 .000 .000
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In general, as the size of the samples increases, the range of sample representativeness and AUC values de-
creases, because the variety in samples of larger size is not as high as that in samples of smaller size (e.g., there are 
only 10 possible different combinations of selecting 9 sample locations out of a total of 10 locations, while there 
are 252 combinations of selecting 5 locations from the 10).

4.2 | Impact of VGI sample spatial configuration

VGI samples examined in Section 3.2 had drastically different spatial configurations. Across the samples, a corre-
lation between AUC and sample size was absent (Section 3.2.3). For such samples, it was the spatial configuration 
of the samples, not the sample size, that affected the effectiveness of the spatial bias mitigation methods in im-
proving suitability model performance (Section 3.2). VGI samples with spatial configurations that are more spread 
out tend to be more amenable to bias mitigation for improving model performance, whilst samples with limited 
spatial coverage leave little space for bias mitigation.

4.3 | Impact of number of species occurrences in VGI samples

The number of species occurrences contained in VGI samples contributes to VGI (effort) sample size. It would 
thus impact the effectiveness of the bias mitigation methods in a way similar to effort sample size (as discussed in 
Section 4.1). Moreover, it should have a more direct impact on the performance of predictive suitability models as 
only species occurrence locations, not the non-occurrence locations, were used to train models. For example, one 
needs to add in a much larger number of non-occurrence locations than species occurrence locations to achieve 
a comparable amount of AUC improvement using the representativeness weighting method (comparing Figures 
6 and 11).

4.4 | Impact of VGI sample representativeness

The representativeness of a VGI sample is an overall reflection of the intertwined effects of effort sample size, 
spatial configuration, and number of species occurrences. An observation that was rather consistent across the 
diverse VGI samples was that suitability model performance (AUC) was positively correlated with VGI sample 
representativeness, suggesting that bias mitigation methods were more effective on VGI samples of higher repre-
sentativeness. Also, AUC plateaued beyond a certain representativeness threshold (see Figures 7 and 12), which 
may indicate a ceiling effect of sample representativeness on the effectiveness of the bias mitigation methods.

4.5 | Sampling designs in VGI

In most cases, volunteers conduct observations in an ad-hoc, opportunistic, and uncoordinated manner without 
following any (probability) sampling designs. As a result, the inclusion probability of sample locations is unknown 
and VGI-based samples are often non-probability ones (e.g., eBird data used in this study). In rare cases, volun-
teers could be directed to sample locations designed following probability sampling protocols to collect probabil-
ity samples, and the inclusion probability of sample locations is known (see Section 3.3 in Stehman, Fonte, Foody, 
& See, 2018 for examples).

The representativeness-directed weighting and importance weighting methods fall under the model-based 
inference framework (Gregoire, 1998). They do not rely on inclusion probability of sample locations to mitigate 
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spatial bias and thus are supposed to be applicable to both non-probability and probability VGI-based samples. 
However, when the methods are applied to probability samples, information on inclusion probability is simply 
discarded (samples are treated as if they are non-probability ones). For mitigating bias in probability samples, 
other methods under the design-based statistical inference framework that make use of inclusion probability (e.g., 
Bethlehem, 2010; Stehman et al., 2018) may be more beneficial and efficient. How sample size and spatial config-
uration affect the effectiveness of such bias mitigation methods is beyond the scope of this article and deserves 
separate treatment.

4.6 | Limitations

There are limitations in this study. Samples of varying spatial configurations were obtained simply by dividing the 
sample locations into quadrants of the study area based on cardinal directions. In general, the spatial configuration 
of a point pattern can be more complex, and the clustering or sparseness of sample locations does not always align 
with the division of quadrants.

Ideally, when investigating the impacts of sample size and sample spatial configuration, the condition of one 
factor should be kept constant while varying the condition of the other factor (i.e., controlled experiments). For 
instance, when examining the impact of sample size, the spatial configuration of the samples should be held 
changeless or changes be negligible across different sample sizes. When investigating the effect of sample spatial 
configuration, sample size should be held constant. Yet strict controls are difficult to implement when work-
ing with real-world data. In this study's experiment designs, such controls were maintained as much as possible 

F I G U R E  1 2 Relationship between mean AUC and mean representativeness of effort samples with varying 
number of species occurrences
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and experiment results support that the controls are reasonable (see detailed discussion in Sections 2.4.1–2.4.3, 
respectively).

5  | CONCLUSIONS

This study presents an empirical evaluation of the impacts of VGI sample size and spatial configuration on the 
effectiveness of spatial bias mitigation methods in improving the performance of predictive models through a 
habitat suitability mapping case study. Evaluation results showed that: (a) predictive model performance improve-
ment brought by the bias mitigation methods was positively correlated with sample size when samples have simi-
lar spatial configurations; (b) VGI samples with more spread-out spatial coverages were more amenable to bias 
mitigation for improving model performance; (c) the bias mitigation methods were more effective on VGI samples 
of higher representativeness, where sample representativeness is a measure encapsulating the intertwined ef-
fects of sample size and sample spatial configuration; and (d) model performance improvement plateaued beyond 
a certain sample size and sample representativeness thresholds, indicating ceiling effects on the effectiveness of 
the bias mitigation methods.

Spatial bias and other forms of bias are a prominent VGI data quality issue when using VGI for spatial analyses 
and geographic or environmental modeling (Zhang & Zhu, 2018). The findings of this study, though derived from 
a habitat suitability modeling case study, are expected to inform assessing the fitness and effectiveness of VGI 
spatial bias mitigation methods for improving the performance of predictive models in general. Many predictive 
modeling methods used for regression or classification problems (multivariate regression, decision trees, random 
forests, etc.) fall in the same paradigm as the logistic regression method used for suitability modeling in this 
study, wherein a target variable (continuous or discrete) is modeled as a function of a set of covariates such that 
the values of that target variable can be inferred from observations of the covariates. The function is fitted on a 
training sample that contains observed values of the target variable and the covariates at a series of field sample 
locations by minimizing the differences between observed values of the target variable and those predicted from 
the function. Thus, spatial bias in the field sample locations would affect the modeling methods in similar ways 
(Zhang & Zhu, 2018). As a result, the findings of this study have broader implications for coping with spatial bias 
in VGI-based samples for many application domains beyond habitat mapping—for example, species distribution 
modeling (Zhang, 2019), digital soil mapping (Rossiter, Liu, Carlisle, & Zhu, 2015), and land cover classification 
(Comber et al., 2013).
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